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ππ S-wave phase shifts and non-perturbative chiral approach
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Abstract. We extend a recent non-perturbative chiral approach to ππ S-wave scattering of Oller and Oset
by including the couplings to the ηη-channel. We find that the isospin-zero and isospin-two ππ S-wave phase
shifts of the model deviate considerably from a recent solution of the Roy-equations. Including the couplings
with the ηη-channel does not improve the situation. In particular, no σ-meson like enhancement structure
shows up in the Roy-equation solution. We also consider the ππ-scattering lengths in this approach.

PACS. 12.39.Fe Chiral lagrangians – 13.75.Lb Meson-meson interactions

1 Introduction and summary

In a recent work, Oller and Oset [1] proposed a non-
perturbative approach to deal with the meson-meson in-
teraction in the scalar sector at energies up to

√
s ' 1.2

GeV, exploiting chiral symmetry and unitarity in coupled
channel. Whereas systematic chiral perturbation theory
(renormalized quantum field theory based on the effective
chiral Lagrangian) is valid only up to energies

√
s ' 0.6

GeV, [1] extended the energy region by going over to
a non-perturbative model. In that work the S-wave am-
plitudes following from the non-linear sigma-model (low-
est order chiral Lagrangian) were identified with a cou-
pled channel potential which is iterated to infinite or-
der via a separable Lippmann-Schwinger equation. Us-
ing only one adjustable parameter (a cut-off Λ = 1.2
GeV) a good fit of various empirical meson-meson scat-
tering amplitudes was found. When treating the coupled
channels (ππ,KK̄) with total isospin I = 0, the (narrow)
scalar isoscalar f0(980) resonance is generated as an un-
stable KK̄ bound state. It originates dynamically from
the strong I = 0 KK̄-attraction as predicted by the non-
linear chiral Lagrangian. Furthermore, the broad bump in
the calculated isospin-zero ππ S-wave phase shift around√
s ' 0.6 GeV was related to a (complex) σ-meson pole

at
√
s ' (0.47+0.19 i) GeV. Also, in the coupled channels

(πη,KK̄) with isospin I = 1, the scalar isovector a0(980)
resonance appears as a quasi-bound KK̄-molecule. In the
meanwhile the non-perturbative chiral model has been
generalized such that even the vector meson poles (ρ,K∗)
can be generated via an inverse amplitude method [2]
and applications to in-medium modifications are presently
studied [3].

The purpose of this short note is to critically reexam-
ine the work of [1]. First, we will include in the description
of I = 0 ππ-scattering the ηη-channel whose threshold
(only 108 MeV above the KK̄-threshold) lies still in the
energy region under consideration. Secondly, we will com-
pare the results of the model with a recent solution of the
Roy-equations [5,6]. Since Roy-equation solutions fulfill
all constraints due to analyticity, unitarity and crossing
symmetry they are in general more reliable than plain fits
to semi-empirical ππ cross sections as e.g. extracted via
extrapolations from πN → ππN data. As a result we find
that there are appreciable discrepancies between the pre-
diction of the chiral coupled channel model (allowing for
only one fit parameter λ) and the solution of the Roy-
equations. This feature holds in the case of the I = 0 ππ
S-wave phase shift for the model with and without inclu-
sion of the ηη-channel. In particular, the I = 0 ππ S-wave
phase shift δ0

0 obtained from solving the Roy-equations
rises just monotonically and linearly up to

√
s ' 0.8 GeV

and it shows no σ-meson like (enhancement) structure.
Also, the I = 2 ππ S-wave phase shift is not well repro-
duced above

√
s = 0.6 GeV. We conclude that model of

[1] is not able to give an accurate representation of ππ
S-wave scattering in the energy region from threshold up
to
√
s = 1.1 GeV.

2 Model

In this section we discuss briefly the main ingredients
of the model [1] together with the inclusion of the ηη-
channel. The unique leading order chiral Lagrangian for
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(pseudoscalar) meson interaction reads,

L(2)
φφ =

f2

4
tr
{
∂µU∂µU

† + χ(U + U†)
}

(1)

with f = 92.4 MeV the pion decay constant,
χ = diag(m2

π,m
2
π, 2m

2
K − m2

π) and the SU(3)-matrix
U = exp(iφ/f) collecting the octet Goldstone boson
fields (π,K, K̄, η). We consider the coupled channels
(ππ,KK̄, ηη) in the S-wave with total isospin I = 0
and label the corresponding two-meson states by an in-
dex j with values (1,2,3), respectively. The S-wave meson-
meson scattering amplitudes following from (1) are iden-
tified with a coupled channel potential matrix Vjk = Vkj
which reads,

V11 =
2s−m2

π

2f2
, V12 =

√
3 s

4f2
, V13 =

m2
π

2
√

3f2
,

V22 =
3s

4f2
, V23 =

9s− 8m2
K

12f2
, V33 =

16m2
K − 7m2

π

18f2
. (2)

Note that a positive Vjj means here attraction. In order to
obtain the coupled channel T-matrix the potential is iter-
ated to infinite order via a separable Lippmann-Schwinger
(matrix) equation of the form,

Tjk = Vjk +
3∑
l=1

VjlGl Tlk , (3)

which is easily solved by matrix inversion. Note that extra
factors of 1/

√
2 and 1/2 are included in the potentials

Vjk in order to account for the statistical factor occuring
in states with identical particles (ππ, ηη). The quantity
Gl is the intermediate state two-meson propagator which
derives from the meson-loop with two relativistic scalar
propagators, G1 = J(s,mπ), G2 = J(s,mK) and G3 =
J(s,mη). Whereas [1] used a three-momentum cut-off to
regularize the loop integral J(s,m), we will employ the
standard quantum field theoretical result of dimensional
regularization and minimal subtraction,

J(s,m) =
1

8π2

[
1
2
− ln

m

λ
−
√

4m2 − s
s

arcsin
√
s

2m

]
,

0 < s < 4m2,
(4)

J(s,m) =
1

8π2

[
1
2
− ln

m

λ
+

√
s− 4m2

s

×
(
i
π

2
− ln

√
s+
√
s− 4m2

2m

)]
, s > 4m2.

The (renormalization) scale λ plays a role similar to the
cut-off in [1] due to the (mild) logarithmic divergence of
the meson-loop. Another way to view the differences for
Gl is that [1] used an unsubtracted dispersion relation
with the imaginary part set to zero above the cut-off Λ,
whereas we use a once-subtracted dispersion relation with
the subtraction constant given by dimensional regulariza-
tion and minimal subtraction. As we will see soon, such

differences have almost no effect on the numerical results.
Finally, one calculates the I = 0 ππ S-wave phase shift δ0

0

and inelasticity η0
0 from the relation,

η0
0 e

2iδ0
0 = 1 +

i

8π

√
1− 4m2

π/s T11 , (5)

where η0
0 = 1 up to the KK̄-threshold s = 4m2

K . The
I = 0 ππ scattering length is given by a0

0 = T11/16π,
evaluated at s = 4m2

π. Within the separable Lippmann-
Schwinger equation approach ππ S-wave scattering with
total isospin I = 2 is a single channel problem,

V =
2m2

π − s
2f2

, T =
V

1− V J(s,mπ)
,

(6)
e2iδ2

0 = 1 +
i

8π

√
1− 4m2

π/s T.

3 Results

We use for the meson masses mπ = 139.57 MeV, mK =
493.65 MeV and mη = 547.45 MeV. Let us first consider
the model without the ηη-channel as done in [1] by set-
ting V13 and V23 equal to zero. The scale λ is fixed in a
best fit of the model to the phase shift δ0

0 in the region
2mπ <

√
s < 1.1 GeV obtained from a recent solution

of the Roy-equations [5,6]. The optimal value of λ = 1.1
GeV is very close to the cut-off Λ = 1.2 GeV of [1]. The re-
sulting phase shift δ0

0 of the model is shown by the dashed
line in the left part of Fig. 1 together with the recent Roy-
equation solution (full line). The dashed curve is nearly
identical to the one of Oller and Oset [1] which shows
that the different treatment of the two-meson propagator
Gl has almost no numerical effect. One observes apprecia-
ble deviations in Fig. 1. The enhancement of δ0

0 around√
s = 0.6 GeV in the model related to the broad σ-meson

is not present in the solution of the Roy-equations. Fur-
thermore, the dashed line rises too steeply above

√
s = 0.9

GeV and therefore it ends with a too large value of δ0
0 at√

s = 1.1 GeV. We remark aside that the error band as-
sociated with earlier Roy-equation solutions [4] has now
been substantially reduced due to the precise knowledge
of the I = 0 ππ-scattering length a0

0 from (two-loop) chiral
perturbation theory [7,8].

Next, we consider the complete model with inclusion
of the ηη-channel. Note that there is a large coupling V23

between the KK̄- and ηη-channel and one might expect
that it will cause a rather different energy dependence of
δ0
0 . However, as the right part of Fig. 1 shows, a mere re-

duction of the scale parameter to λ = 0.9 GeV (found in
a best fit) leads to a result for δ0

0 which is very similar
to the model without the ηη-channel. In particular there
remain the same deviations from the full curve. The in-
elasticity η0

0 above the KK̄-threshold is more sensitive to
the presence of couplings to the ηη-channel. However, in
both cases one does not find an accurate representation of
η0

0 given by the Roy-equation solution [6]. Furthermore,
we show in Fig. 2 the isospin I = 2 ππ S-wave phase shift.
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Fig. 1. I = 0 ππ S-wave phase shift δ0
0 versus the center-of-mass energy

√
s. The full lines give the solution of the Roy-equations

[6] and the dashed lines correspond to the results of the model. Left: The ηη-channel is switched off. Right: The ηη-channel is
included
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Fig. 2. I = 2 ππ S-wave phase shift δ2
0 versus the center-of-

mass energy
√
s. For further notations see Fig. 1

The dashed curve (calculated with λ = 1.1 GeV) approx-
imately follows the solution of the Roy-equations [6] (full
line) up to

√
s = 0.6 GeV. The upward bending at higher

energies cannot be reproduced by the simple model (6)
using a separable Lippmann-Schwinger equation. We also
note that the results for δ2

0 vary only weakly with the
scale λ.

Finally, we mention results for the ππ-scattering
lengths a0,2

0 . The model gives a0
0 = 0.217 (with zero cou-

plings to the ηη-channel), a0
0 = 0.210 (for the complete

model) and a2
0 = −0.0423. These numerical values are

close to the results of chiral perturbation theory at one-
and two-loop order [7,8]. However, if one considers their
pion-mass expansion,

a0
0 =

7m2
π

32πf2

{
1− 7

(mπ

4πf

)2

ln
mπ

λ
+ . . .

}
,

(7)

a2
0 = − m2

π

16πf2

{
1 + 2

(mπ

4πf

)2

ln
mπ

λ
+ . . .

}
,

one finds that the coefficients of the chiral logarithms are
incorrect. They should read 9 and 3 in (7) instead of
7 and 2. Clearly, these differences stem from additional
loops in the t- and u-channel and tadpole graphs of chi-
ral perturbation theory which cannot be generated by the
Lippmann-Schwinger equation. Numerically, this deficit
seems to be cured in the model by (incomplete) higher
order terms.

I thank T. Waas for valuable contributions to this work and
particularly P. Büttiker for providing me his numerical results
of the Roy-equation solutions for δ0,2

0 .
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